HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/algorithms/bipartite/tests/test_cluster.py
import networkx as nx
import pytest
from networkx.algorithms.bipartite.cluster import cc_dot, cc_min, cc_max
import networkx.algorithms.bipartite as bipartite


def test_pairwise_bipartite_cc_functions():
    # Test functions for different kinds of bipartite clustering coefficients
    # between pairs of nodes using 3 example graphs from figure 5 p. 40
    # Latapy et al (2008)
    G1 = nx.Graph([(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7)])
    G2 = nx.Graph([(0, 2), (0, 3), (0, 4), (1, 3), (1, 4), (1, 5)])
    G3 = nx.Graph([(0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (1, 5), (1, 6), (1, 7), (1, 8), (1, 9)])
    result = {0: [1 / 3.0, 2 / 3.0, 2 / 5.0],
              1: [1 / 2.0, 2 / 3.0, 2 / 3.0],
              2: [2 / 8.0, 2 / 5.0, 2 / 5.0]}
    for i, G in enumerate([G1, G2, G3]):
        assert(bipartite.is_bipartite(G))
        assert(cc_dot(set(G[0]), set(G[1])) == result[i][0])
        assert(cc_min(set(G[0]), set(G[1])) == result[i][1])
        assert(cc_max(set(G[0]), set(G[1])) == result[i][2])


def test_star_graph():
    G = nx.star_graph(3)
    # all modes are the same
    answer = {0: 0, 1: 1, 2: 1, 3: 1}
    assert bipartite.clustering(G, mode='dot') == answer
    assert bipartite.clustering(G, mode='min') == answer
    assert bipartite.clustering(G, mode='max') == answer


def test_not_bipartite():
    with pytest.raises(nx.NetworkXError):
        bipartite.clustering(nx.complete_graph(4))


def test_bad_mode():
    with pytest.raises(nx.NetworkXError):
        bipartite.clustering(nx.path_graph(4), mode='foo')


def test_path_graph():
    G = nx.path_graph(4)
    answer = {0: 0.5, 1: 0.5, 2: 0.5, 3: 0.5}
    assert bipartite.clustering(G, mode='dot') == answer
    assert bipartite.clustering(G, mode='max') == answer
    answer = {0: 1, 1: 1, 2: 1, 3: 1}
    assert bipartite.clustering(G, mode='min') == answer


def test_average_path_graph():
    G = nx.path_graph(4)
    assert bipartite.average_clustering(G, mode='dot') == 0.5
    assert bipartite.average_clustering(G, mode='max') == 0.5
    assert bipartite.average_clustering(G, mode='min') == 1


def test_ra_clustering_davis():
    G = nx.davis_southern_women_graph()
    cc4 = round(bipartite.robins_alexander_clustering(G), 3)
    assert cc4 == 0.468


def test_ra_clustering_square():
    G = nx.path_graph(4)
    G.add_edge(0, 3)
    assert bipartite.robins_alexander_clustering(G) == 1.0


def test_ra_clustering_zero():
    G = nx.Graph()
    assert bipartite.robins_alexander_clustering(G) == 0
    G.add_nodes_from(range(4))
    assert bipartite.robins_alexander_clustering(G) == 0
    G.add_edges_from([(0, 1), (2, 3), (3, 4)])
    assert bipartite.robins_alexander_clustering(G) == 0
    G.add_edge(1, 2)
    assert bipartite.robins_alexander_clustering(G) == 0