HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/algorithms/centrality/current_flow_closeness.py
#    Copyright (C) 2010-2019 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
#
# Author: Aric Hagberg (hagberg@lanl.gov)
"""Current-flow closeness centrality measures."""
import networkx as nx

from networkx.utils import not_implemented_for, reverse_cuthill_mckee_ordering
from networkx.algorithms.centrality.flow_matrix import *

__all__ = ['current_flow_closeness_centrality', 'information_centrality']


@not_implemented_for('directed')
def current_flow_closeness_centrality(G, weight=None,
                                      dtype=float, solver='lu'):
    """Compute current-flow closeness centrality for nodes.

    Current-flow closeness centrality is variant of closeness
    centrality based on effective resistance between nodes in
    a network. This metric is also known as information centrality.

    Parameters
    ----------
    G : graph
      A NetworkX graph.

    weight : None or string, optional (default=None)
      If None, all edge weights are considered equal.
      Otherwise holds the name of the edge attribute used as weight.

    dtype: data type (default=float)
      Default data type for internal matrices.
      Set to np.float32 for lower memory consumption.

    solver: string (default='lu')
       Type of linear solver to use for computing the flow matrix.
       Options are "full" (uses most memory), "lu" (recommended), and
       "cg" (uses least memory).

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with current flow closeness centrality as the value.

    See Also
    --------
    closeness_centrality

    Notes
    -----
    The algorithm is from Brandes [1]_.

    See also [2]_ for the original definition of information centrality.

    References
    ----------
    .. [1] Ulrik Brandes and Daniel Fleischer,
       Centrality Measures Based on Current Flow.
       Proc. 22nd Symp. Theoretical Aspects of Computer Science (STACS '05).
       LNCS 3404, pp. 533-544. Springer-Verlag, 2005.
       http://algo.uni-konstanz.de/publications/bf-cmbcf-05.pdf

    .. [2] Karen Stephenson and Marvin Zelen:
       Rethinking centrality: Methods and examples.
       Social Networks 11(1):1-37, 1989.
       https://doi.org/10.1016/0378-8733(89)90016-6
    """
    import numpy as np
    import scipy
    if not nx.is_connected(G):
        raise nx.NetworkXError("Graph not connected.")
    solvername = {"full": FullInverseLaplacian,
                  "lu": SuperLUInverseLaplacian,
                  "cg": CGInverseLaplacian}
    n = G.number_of_nodes()
    ordering = list(reverse_cuthill_mckee_ordering(G))
    # make a copy with integer labels according to rcm ordering
    # this could be done without a copy if we really wanted to
    H = nx.relabel_nodes(G, dict(zip(ordering, range(n))))
    betweenness = dict.fromkeys(H, 0.0)  # b[v]=0 for v in H
    n = H.number_of_nodes()
    L = laplacian_sparse_matrix(H, nodelist=range(n), weight=weight,
                                dtype=dtype, format='csc')
    C2 = solvername[solver](L, width=1, dtype=dtype)  # initialize solver
    for v in H:
        col = C2.get_row(v)
        for w in H:
            betweenness[v] += col[v] - 2 * col[w]
            betweenness[w] += col[v]
    for v in H:
        betweenness[v] = 1.0 / (betweenness[v])
    return dict((ordering[k], float(v)) for k, v in betweenness.items())


information_centrality = current_flow_closeness_centrality


# fixture for pytest
def setup_module(module):
    import pytest
    numpy = pytest.importorskip('numpy')