HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/algorithms/centrality/degree_alg.py
#    Copyright (C) 2004-2019 by
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.
#
# Authors: Aric Hagberg (hagberg@lanl.gov)
#          Pieter Swart (swart@lanl.gov)
#          Sasha Gutfraind (ag362@cornell.edu)
"""Degree centrality measures."""
import networkx as nx
from networkx.utils.decorators import not_implemented_for

__all__ = ['degree_centrality',
           'in_degree_centrality',
           'out_degree_centrality']


def degree_centrality(G):
    """Compute the degree centrality for nodes.

    The degree centrality for a node v is the fraction of nodes it
    is connected to.

    Parameters
    ----------
    G : graph
      A networkx graph

    Returns
    -------
    nodes : dictionary
       Dictionary of nodes with degree centrality as the value.

    See Also
    --------
    betweenness_centrality, load_centrality, eigenvector_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    """
    if len(G) <= 1:
        return {n: 1 for n in G}

    s = 1.0 / (len(G) - 1.0)
    centrality = {n: d * s for n, d in G.degree()}
    return centrality


@not_implemented_for('undirected')
def in_degree_centrality(G):
    """Compute the in-degree centrality for nodes.

    The in-degree centrality for a node v is the fraction of nodes its
    incoming edges are connected to.

    Parameters
    ----------
    G : graph
        A NetworkX graph

    Returns
    -------
    nodes : dictionary
        Dictionary of nodes with in-degree centrality as values.

    Raises
    ------
    NetworkXNotImplemented:
        If G is undirected.

    See Also
    --------
    degree_centrality, out_degree_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    """
    if len(G) <= 1:
        return {n: 1 for n in G}

    s = 1.0 / (len(G) - 1.0)
    centrality = {n: d * s for n, d in G.in_degree()}
    return centrality


@not_implemented_for('undirected')
def out_degree_centrality(G):
    """Compute the out-degree centrality for nodes.

    The out-degree centrality for a node v is the fraction of nodes its
    outgoing edges are connected to.

    Parameters
    ----------
    G : graph
        A NetworkX graph

    Returns
    -------
    nodes : dictionary
        Dictionary of nodes with out-degree centrality as values.

    Raises
    ------
    NetworkXNotImplemented:
        If G is undirected.

    See Also
    --------
    degree_centrality, in_degree_centrality

    Notes
    -----
    The degree centrality values are normalized by dividing by the maximum
    possible degree in a simple graph n-1 where n is the number of nodes in G.

    For multigraphs or graphs with self loops the maximum degree might
    be higher than n-1 and values of degree centrality greater than 1
    are possible.
    """
    if len(G) <= 1:
        return {n: 1 for n in G}

    s = 1.0 / (len(G) - 1.0)
    centrality = {n: d * s for n, d in G.out_degree()}
    return centrality