HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/algorithms/centrality/tests/test_betweenness_centrality.py
#!/usr/bin/env python
import networkx as nx
from networkx.testing import almost_equal

def weighted_G():
    G = nx.Graph()
    G.add_edge(0, 1, weight=3)
    G.add_edge(0, 2, weight=2)
    G.add_edge(0, 3, weight=6)
    G.add_edge(0, 4, weight=4)
    G.add_edge(1, 3, weight=5)
    G.add_edge(1, 5, weight=5)
    G.add_edge(2, 4, weight=1)
    G.add_edge(3, 4, weight=2)
    G.add_edge(3, 5, weight=1)
    G.add_edge(4, 5, weight=4)
    return G


class TestBetweennessCentrality(object):
    def test_K5(self):
        """Betweenness centrality: K5"""
        G = nx.complete_graph(5)
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False)
        b_answer = {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_K5_endpoints(self):
        """Betweenness centrality: K5 endpoints"""
        G = nx.complete_graph(5)
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False,
                                      endpoints=True)
        b_answer = {0: 4.0, 1: 4.0, 2: 4.0, 3: 4.0, 4: 4.0}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])
        # normalized = True case
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True,
                                      endpoints=True)
        b_answer = {0: 0.4, 1: 0.4, 2: 0.4, 3: 0.4, 4: 0.4}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_P3_normalized(self):
        """Betweenness centrality: P3 normalized"""
        G = nx.path_graph(3)
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True)
        b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_P3(self):
        """Betweenness centrality: P3"""
        G = nx.path_graph(3)
        b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_sample_from_P3(self):
        G= nx.path_graph(3)
        b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
        b = nx.betweenness_centrality(G,
                                      k=3,
                                      weight=None,
                                      normalized=False,
                                      seed=1)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])
        b = nx.betweenness_centrality(G,
                                      k=2,
                                      weight=None,
                                      normalized=False,
                                      seed=1)
        # python versions give different results with same seed
        b_approx1 = {0: 0.0, 1: 1.5, 2: 0.0}
        b_approx2 = {0: 0.0, 1: 0.75, 2: 0.0}
        for n in sorted(G):
            assert b[n] in (b_approx1[n], b_approx2[n])

    def test_P3_endpoints(self):
        """Betweenness centrality: P3 endpoints"""
        G = nx.path_graph(3)
        b_answer = {0: 2.0, 1: 3.0, 2: 2.0}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False,
                                      endpoints=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])
        # normalized = True case
        b_answer = {0: 2/3, 1: 1.0, 2: 2/3}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True,
                                      endpoints=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_krackhardt_kite_graph(self):
        """Betweenness centrality: Krackhardt kite graph"""
        G = nx.krackhardt_kite_graph()
        b_answer = {0: 1.667, 1: 1.667, 2: 0.000, 3: 7.333, 4: 0.000,
                    5: 16.667, 6: 16.667, 7: 28.000, 8: 16.000, 9: 0.000}
        for b in b_answer:
            b_answer[b] /= 2
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_krackhardt_kite_graph_normalized(self):
        """Betweenness centrality: Krackhardt kite graph normalized"""
        G = nx.krackhardt_kite_graph()
        b_answer = {0: 0.023, 1: 0.023, 2: 0.000, 3: 0.102, 4: 0.000,
                    5: 0.231, 6: 0.231, 7: 0.389, 8: 0.222, 9: 0.000}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_florentine_families_graph(self):
        """Betweenness centrality: Florentine families graph"""
        G = nx.florentine_families_graph()
        b_answer =\
            {'Acciaiuoli':    0.000,
             'Albizzi':       0.212,
             'Barbadori':     0.093,
             'Bischeri':      0.104,
             'Castellani':    0.055,
             'Ginori':        0.000,
             'Guadagni':      0.255,
             'Lamberteschi':  0.000,
             'Medici':        0.522,
             'Pazzi':         0.000,
             'Peruzzi':       0.022,
             'Ridolfi':       0.114,
             'Salviati':      0.143,
             'Strozzi':       0.103,
             'Tornabuoni':    0.092}

        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_les_miserables_graph(self):
        """Betweenness centrality: Les Miserables graph"""
        G = nx.les_miserables_graph()
        b_answer = \
            {'Napoleon': 0.000,
             'Myriel': 0.177,
             'MlleBaptistine': 0.000,
             'MmeMagloire': 0.000,
             'CountessDeLo': 0.000,
             'Geborand': 0.000,
             'Champtercier': 0.000,
             'Cravatte': 0.000,
             'Count': 0.000,
             'OldMan': 0.000,
             'Valjean': 0.570,
             'Labarre': 0.000,
             'Marguerite': 0.000,
             'MmeDeR': 0.000,
             'Isabeau': 0.000,
             'Gervais': 0.000,
             'Listolier': 0.000,
             'Tholomyes': 0.041,
             'Fameuil': 0.000,
             'Blacheville': 0.000,
             'Favourite': 0.000,
             'Dahlia': 0.000,
             'Zephine': 0.000,
             'Fantine': 0.130,
             'MmeThenardier': 0.029,
             'Thenardier': 0.075,
             'Cosette': 0.024,
             'Javert': 0.054,
             'Fauchelevent': 0.026,
             'Bamatabois': 0.008,
             'Perpetue': 0.000,
             'Simplice': 0.009,
             'Scaufflaire': 0.000,
             'Woman1': 0.000,
             'Judge': 0.000,
             'Champmathieu': 0.000,
             'Brevet': 0.000,
             'Chenildieu': 0.000,
             'Cochepaille': 0.000,
             'Pontmercy': 0.007,
             'Boulatruelle': 0.000,
             'Eponine': 0.011,
             'Anzelma': 0.000,
             'Woman2': 0.000,
             'MotherInnocent': 0.000,
             'Gribier': 0.000,
             'MmeBurgon': 0.026,
             'Jondrette': 0.000,
             'Gavroche': 0.165,
             'Gillenormand': 0.020,
             'Magnon': 0.000,
             'MlleGillenormand': 0.048,
             'MmePontmercy': 0.000,
             'MlleVaubois': 0.000,
             'LtGillenormand': 0.000,
             'Marius': 0.132,
             'BaronessT': 0.000,
             'Mabeuf': 0.028,
             'Enjolras': 0.043,
             'Combeferre': 0.001,
             'Prouvaire': 0.000,
             'Feuilly': 0.001,
             'Courfeyrac': 0.005,
             'Bahorel': 0.002,
             'Bossuet': 0.031,
             'Joly': 0.002,
             'Grantaire': 0.000,
             'MotherPlutarch': 0.000,
             'Gueulemer': 0.005,
             'Babet': 0.005,
             'Claquesous': 0.005,
             'Montparnasse': 0.004,
             'Toussaint': 0.000,
             'Child1': 0.000,
             'Child2': 0.000,
             'Brujon': 0.000,
             'MmeHucheloup': 0.000}

        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_ladder_graph(self):
        """Betweenness centrality: Ladder graph"""
        G = nx.Graph()  # ladder_graph(3)
        G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3),
                          (2, 4), (4, 5), (3, 5)])
        b_answer = {0: 1.667, 1: 1.667, 2: 6.667,
                    3: 6.667, 4: 1.667, 5: 1.667}
        for b in b_answer:
            b_answer[b] /= 2
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_disconnected_path(self):
        """Betweenness centrality: disconnected path"""
        G = nx.Graph()
        nx.add_path(G, [0, 1, 2])
        nx.add_path(G, [3, 4, 5, 6])
        b_answer = {0: 0, 1: 1, 2: 0, 3: 0, 4: 2, 5: 2, 6: 0}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_disconnected_path_endpoints(self):
        """Betweenness centrality: disconnected path endpoints"""
        G = nx.Graph()
        nx.add_path(G, [0, 1, 2])
        nx.add_path(G, [3, 4, 5, 6])
        b_answer = {0: 2, 1: 3, 2: 2, 3: 3, 4: 5, 5: 5, 6: 3}
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False,
                                      endpoints=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])
        # normalized = True case
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True,
                                      endpoints=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n] / 21)

    def test_directed_path(self):
        """Betweenness centrality: directed path"""
        G = nx.DiGraph()
        nx.add_path(G, [0, 1, 2])
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=False)
        b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_directed_path_normalized(self):
        """Betweenness centrality: directed path normalized"""
        G = nx.DiGraph()
        nx.add_path(G, [0, 1, 2])
        b = nx.betweenness_centrality(G,
                                      weight=None,
                                      normalized=True)
        b_answer = {0: 0.0, 1: 0.5, 2: 0.0}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])


class TestWeightedBetweennessCentrality(object):
    def test_K5(self):
        """Weighted betweenness centrality: K5"""
        G = nx.complete_graph(5)
        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=False)
        b_answer = {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0, 4: 0.0}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_P3_normalized(self):
        """Weighted betweenness centrality: P3 normalized"""
        G = nx.path_graph(3)
        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=True)
        b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_P3(self):
        """Weighted betweenness centrality: P3"""
        G = nx.path_graph(3)
        b_answer = {0: 0.0, 1: 1.0, 2: 0.0}
        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_krackhardt_kite_graph(self):
        """Weighted betweenness centrality: Krackhardt kite graph"""
        G = nx.krackhardt_kite_graph()
        b_answer = {0: 1.667, 1: 1.667, 2: 0.000, 3: 7.333, 4: 0.000,
                    5: 16.667, 6: 16.667, 7: 28.000, 8: 16.000, 9: 0.000}
        for b in b_answer:
            b_answer[b] /= 2

        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=False)

        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_krackhardt_kite_graph_normalized(self):
        """Weighted betweenness centrality:
        Krackhardt kite graph normalized
        """
        G = nx.krackhardt_kite_graph()
        b_answer = {0: 0.023, 1: 0.023, 2: 0.000, 3: 0.102, 4: 0.000,
                    5: 0.231, 6: 0.231, 7: 0.389, 8: 0.222, 9: 0.000}
        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=True)

        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_florentine_families_graph(self):
        """Weighted betweenness centrality:
        Florentine families graph"""
        G = nx.florentine_families_graph()
        b_answer = \
            {'Acciaiuoli':    0.000,
             'Albizzi':       0.212,
             'Barbadori':     0.093,
             'Bischeri':      0.104,
             'Castellani':    0.055,
             'Ginori':        0.000,
             'Guadagni':      0.255,
             'Lamberteschi':  0.000,
             'Medici':        0.522,
             'Pazzi':         0.000,
             'Peruzzi':       0.022,
             'Ridolfi':       0.114,
             'Salviati':      0.143,
             'Strozzi':       0.103,
             'Tornabuoni':    0.092}

        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_les_miserables_graph(self):
        """Weighted betweenness centrality: Les Miserables graph"""
        G = nx.les_miserables_graph()
        b_answer = \
            {'Napoleon': 0.000,
             'Myriel': 0.177,
             'MlleBaptistine': 0.000,
             'MmeMagloire': 0.000,
             'CountessDeLo': 0.000,
             'Geborand': 0.000,
             'Champtercier': 0.000,
             'Cravatte': 0.000,
             'Count': 0.000,
             'OldMan': 0.000,
             'Valjean': 0.454,
             'Labarre': 0.000,
             'Marguerite': 0.009,
             'MmeDeR': 0.000,
             'Isabeau': 0.000,
             'Gervais': 0.000,
             'Listolier': 0.000,
             'Tholomyes': 0.066,
             'Fameuil': 0.000,
             'Blacheville': 0.000,
             'Favourite': 0.000,
             'Dahlia': 0.000,
             'Zephine': 0.000,
             'Fantine': 0.114,
             'MmeThenardier': 0.046,
             'Thenardier': 0.129,
             'Cosette': 0.075,
             'Javert': 0.193,
             'Fauchelevent': 0.026,
             'Bamatabois': 0.080,
             'Perpetue': 0.000,
             'Simplice': 0.001,
             'Scaufflaire': 0.000,
             'Woman1': 0.000,
             'Judge': 0.000,
             'Champmathieu': 0.000,
             'Brevet': 0.000,
             'Chenildieu': 0.000,
             'Cochepaille': 0.000,
             'Pontmercy': 0.023,
             'Boulatruelle': 0.000,
             'Eponine': 0.023,
             'Anzelma': 0.000,
             'Woman2': 0.000,
             'MotherInnocent': 0.000,
             'Gribier': 0.000,
             'MmeBurgon': 0.026,
             'Jondrette': 0.000,
             'Gavroche': 0.285,
             'Gillenormand': 0.024,
             'Magnon': 0.005,
             'MlleGillenormand': 0.036,
             'MmePontmercy': 0.005,
             'MlleVaubois': 0.000,
             'LtGillenormand': 0.015,
             'Marius': 0.072,
             'BaronessT': 0.004,
             'Mabeuf': 0.089,
             'Enjolras': 0.003,
             'Combeferre': 0.000,
             'Prouvaire': 0.000,
             'Feuilly': 0.004,
             'Courfeyrac': 0.001,
             'Bahorel': 0.007,
             'Bossuet': 0.028,
             'Joly': 0.000,
             'Grantaire': 0.036,
             'MotherPlutarch': 0.000,
             'Gueulemer': 0.025,
             'Babet': 0.015,
             'Claquesous': 0.042,
             'Montparnasse': 0.050,
             'Toussaint': 0.011,
             'Child1': 0.000,
             'Child2': 0.000,
             'Brujon': 0.002,
             'MmeHucheloup': 0.034}

        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=True)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_ladder_graph(self):
        """Weighted betweenness centrality: Ladder graph"""
        G = nx.Graph()  # ladder_graph(3)
        G.add_edges_from([(0, 1), (0, 2), (1, 3), (2, 3),
                          (2, 4), (4, 5), (3, 5)])
        b_answer = {0: 1.667, 1: 1.667, 2: 6.667,
                    3: 6.667, 4: 1.667, 5: 1.667}
        for b in b_answer:
            b_answer[b] /= 2
        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n], places=3)

    def test_G(self):
        """Weighted betweenness centrality: G"""
        G = weighted_G()
        b_answer = {0: 2.0, 1: 0.0, 2: 4.0, 3: 3.0, 4: 4.0, 5: 0.0}
        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])

    def test_G2(self):
        """Weighted betweenness centrality: G2"""
        G = nx.DiGraph()
        G.add_weighted_edges_from([('s', 'u', 10), ('s', 'x', 5),
                                   ('u', 'v', 1), ('u', 'x', 2),
                                   ('v', 'y', 1), ('x', 'u', 3),
                                   ('x', 'v', 5), ('x', 'y', 2),
                                   ('y', 's', 7), ('y', 'v', 6)])

        b_answer = {'y': 5.0, 'x': 5.0, 's': 4.0, 'u': 2.0, 'v': 2.0}

        b = nx.betweenness_centrality(G,
                                      weight='weight',
                                      normalized=False)
        for n in sorted(G):
            assert almost_equal(b[n], b_answer[n])


class TestEdgeBetweennessCentrality(object):
    def test_K5(self):
        """Edge betweenness centrality: K5"""
        G = nx.complete_graph(5)
        b = nx.edge_betweenness_centrality(G, weight=None, normalized=False)
        b_answer = dict.fromkeys(G.edges(), 1)
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_normalized_K5(self):
        """Edge betweenness centrality: K5"""
        G = nx.complete_graph(5)
        b = nx.edge_betweenness_centrality(G, weight=None, normalized=True)
        b_answer = dict.fromkeys(G.edges(), 1 / 10)
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_C4(self):
        """Edge betweenness centrality: C4"""
        G = nx.cycle_graph(4)
        b = nx.edge_betweenness_centrality(G, weight=None, normalized=True)
        b_answer = {(0, 1): 2, (0, 3): 2, (1, 2): 2, (2, 3): 2}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n] / 6)

    def test_P4(self):
        """Edge betweenness centrality: P4"""
        G = nx.path_graph(4)
        b = nx.edge_betweenness_centrality(G, weight=None, normalized=False)
        b_answer = {(0, 1): 3, (1, 2): 4, (2, 3): 3}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_normalized_P4(self):
        """Edge betweenness centrality: P4"""
        G = nx.path_graph(4)
        b = nx.edge_betweenness_centrality(G, weight=None, normalized=True)
        b_answer = {(0, 1): 3, (1, 2): 4, (2, 3): 3}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n] / 6)

    def test_balanced_tree(self):
        """Edge betweenness centrality: balanced tree"""
        G = nx.balanced_tree(r=2, h=2)
        b = nx.edge_betweenness_centrality(G, weight=None, normalized=False)
        b_answer = {(0, 1): 12, (0, 2): 12,
                    (1, 3): 6, (1, 4): 6, (2, 5): 6, (2, 6): 6}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])


class TestWeightedEdgeBetweennessCentrality(object):
    def test_K5(self):
        """Edge betweenness centrality: K5"""
        G = nx.complete_graph(5)
        b = nx.edge_betweenness_centrality(G, weight='weight', normalized=False)
        b_answer = dict.fromkeys(G.edges(), 1)
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_C4(self):
        """Edge betweenness centrality: C4"""
        G = nx.cycle_graph(4)
        b = nx.edge_betweenness_centrality(G, weight='weight', normalized=False)
        b_answer = {(0, 1): 2, (0, 3): 2, (1, 2): 2, (2, 3): 2}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_P4(self):
        """Edge betweenness centrality: P4"""
        G = nx.path_graph(4)
        b = nx.edge_betweenness_centrality(G, weight='weight', normalized=False)
        b_answer = {(0, 1): 3, (1, 2): 4, (2, 3): 3}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_balanced_tree(self):
        """Edge betweenness centrality: balanced tree"""
        G = nx.balanced_tree(r=2, h=2)
        b = nx.edge_betweenness_centrality(G, weight='weight', normalized=False)
        b_answer = {(0, 1): 12, (0, 2): 12,
                    (1, 3): 6, (1, 4): 6, (2, 5): 6, (2, 6): 6}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_weighted_graph(self):
        eList = [(0, 1, 5), (0, 2, 4), (0, 3, 3),
                 (0, 4, 2), (1, 2, 4), (1, 3, 1),
                 (1, 4, 3), (2, 4, 5), (3, 4, 4)]
        G = nx.Graph()
        G.add_weighted_edges_from(eList)
        b = nx.edge_betweenness_centrality(G, weight='weight', normalized=False)
        b_answer = {(0, 1): 0.0,
                    (0, 2): 1.0,
                    (0, 3): 2.0,
                    (0, 4): 1.0,
                    (1, 2): 2.0,
                    (1, 3): 3.5,
                    (1, 4): 1.5,
                    (2, 4): 1.0,
                    (3, 4): 0.5}
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n])

    def test_normalized_weighted_graph(self):
        eList = [(0, 1, 5), (0, 2, 4), (0, 3, 3),
                 (0, 4, 2), (1, 2, 4), (1, 3, 1),
                 (1, 4, 3), (2, 4, 5), (3, 4, 4)]
        G = nx.Graph()
        G.add_weighted_edges_from(eList)
        b = nx.edge_betweenness_centrality(G, weight='weight', normalized=True)
        b_answer = {(0, 1): 0.0,
                    (0, 2): 1.0,
                    (0, 3): 2.0,
                    (0, 4): 1.0,
                    (1, 2): 2.0,
                    (1, 3): 3.5,
                    (1, 4): 1.5,
                    (2, 4): 1.0,
                    (3, 4): 0.5}
        norm = len(G) * (len(G) - 1) / 2
        for n in sorted(G.edges()):
            assert almost_equal(b[n], b_answer[n] / norm)