HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/algorithms/tree/tests/test_branchings.py
import pytest
np = pytest.importorskip('numpy')

import networkx as nx


from networkx.algorithms.tree import branchings
from networkx.algorithms.tree import recognition
from networkx.testing import *

#
# Explicitly discussed examples from Edmonds paper.
#

# Used in Figures A-F.
#
G_array = np.array([
    # 0   1   2   3   4   5   6   7   8
    [0,  0, 12,  0, 12,  0,  0,  0,  0],  # 0
    [4,  0,  0,  0,  0, 13,  0,  0,  0],  # 1
    [0, 17,  0, 21,  0, 12,  0,  0,  0],  # 2
    [5,  0,  0,  0, 17,  0, 18,  0,  0],  # 3
    [0,  0,  0,  0,  0,  0,  0, 12,  0],  # 4
    [0,  0,  0,  0,  0,  0, 14,  0, 12],  # 5
    [0,  0, 21,  0,  0,  0,  0,  0, 15],  # 6
    [0,  0,  0, 19,  0,  0, 15,  0,  0],  # 7
    [0,  0,  0,  0,  0,  0,  0, 18,  0],  # 8
], dtype=int)

# We convert to MultiDiGraph after using from_numpy_matrix
# https://github.com/networkx/networkx/pull/1305


def G1():
    G = nx.DiGraph()
    G = nx.from_numpy_matrix(G_array, create_using=G)
    G = nx.MultiDiGraph(G)
    return G


def G2():
    # Now we shift all the weights by -10.
    # Should not affect optimal arborescence, but does affect optimal branching.
    G = nx.DiGraph()
    Garr = G_array.copy()
    Garr[np.nonzero(Garr)] -= 10
    G = nx.from_numpy_matrix(Garr, create_using=G)
    G = nx.MultiDiGraph(G)
    return G


# An optimal branching for G1 that is also a spanning arborescence. So it is
# also an optimal spanning arborescence.
#
optimal_arborescence_1 = [
    (0, 2, 12), (2, 1, 17), (2, 3, 21), (1, 5, 13),
    (3, 4, 17), (3, 6, 18), (6, 8, 15), (8, 7, 18),
]

# For G2, the optimal branching of G1 (with shifted weights) is no longer
# an optimal branching, but it is still an optimal spanning arborescence
# (just with shifted weights). An optimal branching for G2 is similar to what
# appears in figure G (this is greedy_subopt_branching_1a below), but with the
# edge (3, 0, 5), which is now (3, 0, -5), removed. Thus, the optimal branching
# is not a spanning arborescence. The code finds optimal_branching_2a.
# An alternative and equivalent branching is optimal_branching_2b. We would
# need to modify the code to iterate through all equivalent optimal branchings.
#
# These are maximal branchings or arborescences.
optimal_branching_2a = [
    (5, 6,  4), (6, 2, 11), (6, 8,  5), (8, 7,  8),
    (2, 1,  7), (2, 3, 11), (3, 4,  7),
]
optimal_branching_2b = [
    (8, 7,  8), (7, 3,  9), (3, 4,  7), (3, 6,  8),
    (6, 2, 11), (2, 1,  7), (1, 5,  3),
]
optimal_arborescence_2 = [
    (0, 2,  2), (2, 1,  7), (2, 3, 11), (1, 5,  3),
    (3, 4,  7), (3, 6,  8), (6, 8,  5), (8, 7,  8),
]

# Two suboptimal maximal branchings on G1 obtained from a greedy algorithm.
# 1a matches what is shown in Figure G in Edmonds's paper.
greedy_subopt_branching_1a = [
    (5, 6, 14), (6, 2, 21), (6, 8, 15), (8, 7, 18),
    (2, 1, 17), (2, 3, 21), (3, 0,  5), (3, 4, 17),
]
greedy_subopt_branching_1b = [
    (8, 7, 18), (7, 6, 15), (6, 2, 21), (2, 1, 17),
    (2, 3, 21), (1, 5, 13), (3, 0,  5), (3, 4, 17),
]


def build_branching(edges):
    G = nx.DiGraph()
    for u, v, weight in edges:
        G.add_edge(u, v, weight=weight)
    return G


def sorted_edges(G, attr='weight', default=1):
    edges = [(u, v, data.get(attr, default)) for (u, v, data) in G.edges(data=True)]
    edges = sorted(edges, key=lambda x: (x[2], x[1], x[0]))
    return edges


def assert_equal_branchings(G1, G2, attr='weight', default=1):
    edges1 = list(G1.edges(data=True))
    edges2 = list(G2.edges(data=True))
    assert len(edges1) == len(edges2)

    # Grab the weights only.
    e1 = sorted_edges(G1, attr, default)
    e2 = sorted_edges(G2, attr, default)

    # If we have an exception, let's see the edges.
    print(e1)
    print(e2)
    print

    for a, b in zip(e1, e2):
        assert a[:2] == b[:2]
        np.testing.assert_almost_equal(a[2], b[2])


################

def test_optimal_branching1():
    G = build_branching(optimal_arborescence_1)
    assert recognition.is_arborescence(G), True
    assert branchings.branching_weight(G) ==  131


def test_optimal_branching2a():
    G = build_branching(optimal_branching_2a)
    assert recognition.is_arborescence(G), True
    assert branchings.branching_weight(G) ==  53


def test_optimal_branching2b():
    G = build_branching(optimal_branching_2b)
    assert recognition.is_arborescence(G), True
    assert branchings.branching_weight(G) ==  53


def test_optimal_arborescence2():
    G = build_branching(optimal_arborescence_2)
    assert recognition.is_arborescence(G), True
    assert branchings.branching_weight(G) ==  51


def test_greedy_suboptimal_branching1a():
    G = build_branching(greedy_subopt_branching_1a)
    assert recognition.is_arborescence(G), True
    assert branchings.branching_weight(G) == 128


def test_greedy_suboptimal_branching1b():
    G = build_branching(greedy_subopt_branching_1b)
    assert recognition.is_arborescence(G), True
    assert branchings.branching_weight(G) == 127


def test_greedy_max1():
    # Standard test.
    #
    G = G1()
    B = branchings.greedy_branching(G)
    # There are only two possible greedy branchings. The sorting is such
    # that it should equal the second suboptimal branching: 1b.
    B_ = build_branching(greedy_subopt_branching_1b)
    assert_equal_branchings(B, B_)


def test_greedy_max2():
    # Different default weight.
    #
    G = G1()
    del G[1][0][0]['weight']
    B = branchings.greedy_branching(G, default=6)
    # Chosen so that edge (3,0,5) is not selected and (1,0,6) is instead.

    edges = [
        (1, 0, 6), (1, 5, 13), (7, 6, 15), (2, 1, 17),
        (3, 4, 17), (8, 7, 18), (2, 3, 21), (6, 2, 21),
    ]
    B_ = build_branching(edges)
    assert_equal_branchings(B, B_)


def test_greedy_max3():
    # All equal weights.
    #
    G = G1()
    B = branchings.greedy_branching(G, attr=None)

    # This is mostly arbitrary...the output was generated by running the algo.
    edges = [
        (2, 1, 1), (3, 0, 1), (3, 4, 1), (5, 8, 1),
        (6, 2, 1), (7, 3, 1), (7, 6, 1), (8, 7, 1),
    ]
    B_ = build_branching(edges)
    assert_equal_branchings(B, B_, default=1)


def test_greedy_min():
    G = G1()
    B = branchings.greedy_branching(G, kind='min')

    edges = [
        (1, 0, 4), (0, 2, 12), (0, 4, 12), (2, 5, 12),
        (4, 7, 12), (5, 8, 12), (5, 6, 14), (7, 3, 19)
    ]
    B_ = build_branching(edges)
    assert_equal_branchings(B, B_)


def test_edmonds1_maxbranch():
    G = G1()
    x = branchings.maximum_branching(G)
    x_ = build_branching(optimal_arborescence_1)
    assert_equal_branchings(x, x_)


def test_edmonds1_maxarbor():
    G = G1()
    x = branchings.maximum_spanning_arborescence(G)
    x_ = build_branching(optimal_arborescence_1)
    assert_equal_branchings(x, x_)


def test_edmonds2_maxbranch():
    G = G2()
    x = branchings.maximum_branching(G)
    x_ = build_branching(optimal_branching_2a)
    assert_equal_branchings(x, x_)


def test_edmonds2_maxarbor():
    G = G2()
    x = branchings.maximum_spanning_arborescence(G)
    x_ = build_branching(optimal_arborescence_2)
    assert_equal_branchings(x, x_)


def test_edmonds2_minarbor():
    G = G1()
    x = branchings.minimum_spanning_arborescence(G)
    # This was obtained from algorithm. Need to verify it independently.
    # Branch weight is: 96
    edges = [
        (3, 0, 5), (0, 2, 12), (0, 4, 12), (2, 5, 12),
        (4, 7, 12), (5, 8, 12), (5, 6, 14), (2, 1, 17)
    ]
    x_ = build_branching(edges)
    assert_equal_branchings(x, x_)


def test_edmonds3_minbranch1():
    G = G1()
    x = branchings.minimum_branching(G)
    edges = []
    x_ = build_branching(edges)
    assert_equal_branchings(x, x_)


def test_edmonds3_minbranch2():
    G = G1()
    G.add_edge(8, 9, weight=-10)
    x = branchings.minimum_branching(G)
    edges = [(8, 9, -10)]
    x_ = build_branching(edges)
    assert_equal_branchings(x, x_)

# Need more tests


def test_mst():
    # Make sure we get the same results for undirected graphs.
    # Example from: https://en.wikipedia.org/wiki/Kruskal's_algorithm
    G = nx.Graph()
    edgelist = [(0, 3, [('weight', 5)]),
                (0, 1, [('weight', 7)]),
                (1, 3, [('weight', 9)]),
                (1, 2, [('weight', 8)]),
                (1, 4, [('weight', 7)]),
                (3, 4, [('weight', 15)]),
                (3, 5, [('weight', 6)]),
                (2, 4, [('weight', 5)]),
                (4, 5, [('weight', 8)]),
                (4, 6, [('weight', 9)]),
                (5, 6, [('weight', 11)])]
    G.add_edges_from(edgelist)
    G = G.to_directed()
    x = branchings.minimum_spanning_arborescence(G)

    edges = [(set([0, 1]), 7), (set([0, 3]), 5), (set([3, 5]), 6),
             (set([1, 4]), 7), (set([4, 2]), 5), (set([4, 6]), 9)]

    assert x.number_of_edges() == len(edges)
    for u, v, d in x.edges(data=True):
        assert (set([u, v]), d['weight']) in edges


def test_mixed_nodetypes():
    # Smoke test to make sure no TypeError is raised for mixed node types.
    G = nx.Graph()
    edgelist = [(0, 3, [('weight', 5)]),
                (0, '1', [('weight', 5)])]
    G.add_edges_from(edgelist)
    G = G.to_directed()
    x = branchings.minimum_spanning_arborescence(G)


def test_edmonds1_minbranch():
    # Using -G_array and min should give the same as optimal_arborescence_1,
    # but with all edges negative.
    edges = [(u, v, -w) for (u, v, w) in optimal_arborescence_1]

    G = nx.DiGraph()
    G = nx.from_numpy_matrix(-G_array, create_using=G)

    # Quickly make sure max branching is empty.
    x = branchings.maximum_branching(G)
    x_ = build_branching([])
    assert_equal_branchings(x, x_)

    # Now test the min branching.
    x = branchings.minimum_branching(G)
    x_ = build_branching(edges)
    assert_equal_branchings(x, x_)


def test_edge_attribute_preservation_normal_graph():
    # Test that edge attributes are preserved when finding an optimum graph
    # using the Edmonds class for normal graphs.
    G = nx.Graph()

    edgelist = [(0, 1, [('weight', 5), ('otherattr', 1), ('otherattr2', 3)]),
                (0, 2, [('weight', 5), ('otherattr', 2), ('otherattr2', 2)]),
                (1, 2, [('weight', 6), ('otherattr', 3), ('otherattr2', 1)])]
    G.add_edges_from(edgelist)

    ed = branchings.Edmonds(G)
    B = ed.find_optimum('weight', preserve_attrs=True, seed=1)

    assert B[0][1]['otherattr'] == 1
    assert B[0][1]['otherattr2'] == 3


def test_edge_attribute_preservation_multigraph():

    # Test that edge attributes are preserved when finding an optimum graph
    # using the Edmonds class for multigraphs.
    G = nx.MultiGraph()

    edgelist = [(0, 1, [('weight', 5), ('otherattr', 1), ('otherattr2', 3)]),
                (0, 2, [('weight', 5), ('otherattr', 2), ('otherattr2', 2)]),
                (1, 2, [('weight', 6), ('otherattr', 3), ('otherattr2', 1)])]
    G.add_edges_from(edgelist * 2)  # Make sure we have duplicate edge paths

    ed = branchings.Edmonds(G)
    B = ed.find_optimum('weight', preserve_attrs=True)

    assert B[0][1][0]['otherattr'] == 1
    assert B[0][1][0]['otherattr2'] == 3


def test_edge_attribute_discard():
    # Test that edge attributes are discarded if we do not specify to keep them
    G = nx.Graph()

    edgelist = [(0, 1, [('weight', 5), ('otherattr', 1), ('otherattr2', 3)]),
                (0, 2, [('weight', 5), ('otherattr', 2), ('otherattr2', 2)]),
                (1, 2, [('weight', 6), ('otherattr', 3), ('otherattr2', 1)])]
    G.add_edges_from(edgelist)

    ed = branchings.Edmonds(G)
    B = ed.find_optimum('weight', preserve_attrs=False)

    edge_dict = B[0][1]
    with pytest.raises(KeyError):
        _ = edge_dict['otherattr']