HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/algorithms/tree/tests/test_mst.py
# -*- encoding: utf-8 -*-
# test_mst.py - unit tests for minimum spanning tree functions
#
# Copyright 2016-2019 NetworkX developers.
#
# This file is part of NetworkX.
#
# NetworkX is distributed under a BSD license; see LICENSE.txt for more
# information.
"""Unit tests for the :mod:`networkx.algorithms.tree.mst` module."""
from unittest import TestCase

import pytest

import networkx as nx
from networkx.testing import (assert_graphs_equal, assert_nodes_equal,
                              assert_edges_equal)


def test_unknown_algorithm():
    with pytest.raises(ValueError):
        nx.minimum_spanning_tree(nx.Graph(), algorithm='random')


class MinimumSpanningTreeTestBase(object):
    """Base class for test classes for minimum spanning tree algorithms.

    This class contains some common tests that will be inherited by
    subclasses. Each subclass must have a class attribute
    :data:`algorithm` that is a string representing the algorithm to
    run, as described under the ``algorithm`` keyword argument for the
    :func:`networkx.minimum_spanning_edges` function.  Subclasses can
    then implement any algorithm-specific tests.

    """

    def setup_method(self, method):
        """Creates an example graph and stores the expected minimum and
        maximum spanning tree edges.

        """
        # This stores the class attribute `algorithm` in an instance attribute.
        self.algo = self.algorithm
        # This example graph comes from Wikipedia:
        # https://en.wikipedia.org/wiki/Kruskal's_algorithm
        edges = [(0, 1, 7), (0, 3, 5), (1, 2, 8), (1, 3, 9), (1, 4, 7),
                 (2, 4, 5), (3, 4, 15), (3, 5, 6), (4, 5, 8), (4, 6, 9),
                 (5, 6, 11)]
        self.G = nx.Graph()
        self.G.add_weighted_edges_from(edges)
        self.minimum_spanning_edgelist = [(0, 1, {'weight': 7}),
                                          (0, 3, {'weight': 5}),
                                          (1, 4, {'weight': 7}),
                                          (2, 4, {'weight': 5}),
                                          (3, 5, {'weight': 6}),
                                          (4, 6, {'weight': 9})]
        self.maximum_spanning_edgelist = [(0, 1, {'weight': 7}),
                                          (1, 2, {'weight': 8}),
                                          (1, 3, {'weight': 9}),
                                          (3, 4, {'weight': 15}),
                                          (4, 6, {'weight': 9}),
                                          (5, 6, {'weight': 11})]

    def test_minimum_edges(self):
        edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo)
        # Edges from the spanning edges functions don't come in sorted
        # orientation, so we need to sort each edge individually.
        actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
        assert_edges_equal(actual, self.minimum_spanning_edgelist)

    def test_maximum_edges(self):
        edges = nx.maximum_spanning_edges(self.G, algorithm=self.algo)
        # Edges from the spanning edges functions don't come in sorted
        # orientation, so we need to sort each edge individually.
        actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
        assert_edges_equal(actual, self.maximum_spanning_edgelist)

    def test_without_data(self):
        edges = nx.minimum_spanning_edges(self.G, algorithm=self.algo,
                                          data=False)
        # Edges from the spanning edges functions don't come in sorted
        # orientation, so we need to sort each edge individually.
        actual = sorted((min(u, v), max(u, v)) for u, v in edges)
        expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
        assert_edges_equal(actual, expected)

    def test_nan_weights(self):
        # Edge weights NaN never appear in the spanning tree. see #2164
        G = self.G
        G.add_edge(0, 12, weight=float('nan'))
        edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                          data=False, ignore_nan=True)
        actual = sorted((min(u, v), max(u, v)) for u, v in edges)
        expected = [(u, v) for u, v, d in self.minimum_spanning_edgelist]
        assert_edges_equal(actual, expected)
        # Now test for raising exception
        edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                          data=False, ignore_nan=False)
        with pytest.raises(ValueError):
            list(edges)
        # test default for ignore_nan as False
        edges = nx.minimum_spanning_edges(G, algorithm=self.algo, data=False)
        with pytest.raises(ValueError):
            list(edges)

    def test_nan_weights_order(self):
        # now try again with a nan edge at the beginning of G.nodes
        edges = [(0, 1, 7), (0, 3, 5), (1, 2, 8), (1, 3, 9), (1, 4, 7),
                 (2, 4, 5), (3, 4, 15), (3, 5, 6), (4, 5, 8), (4, 6, 9),
                 (5, 6, 11)]
        G = nx.Graph()
        G.add_weighted_edges_from([(u + 1, v + 1, wt) for u, v, wt in edges])
        G.add_edge(0, 7, weight=float('nan'))
        edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                          data=False, ignore_nan=True)
        actual = sorted((min(u, v), max(u, v)) for u, v in edges)
        shift = [(u + 1, v + 1) for u, v, d in self.minimum_spanning_edgelist]
        assert_edges_equal(actual, shift)

    def test_isolated_node(self):
        # now try again with an isolated node
        edges = [(0, 1, 7), (0, 3, 5), (1, 2, 8), (1, 3, 9), (1, 4, 7),
                 (2, 4, 5), (3, 4, 15), (3, 5, 6), (4, 5, 8), (4, 6, 9),
                 (5, 6, 11)]
        G = nx.Graph()
        G.add_weighted_edges_from([(u + 1, v + 1, wt) for u, v, wt in edges])
        G.add_node(0)
        edges = nx.minimum_spanning_edges(G, algorithm=self.algo,
                                          data=False, ignore_nan=True)
        actual = sorted((min(u, v), max(u, v)) for u, v in edges)
        shift = [(u + 1, v + 1) for u, v, d in self.minimum_spanning_edgelist]
        assert_edges_equal(actual, shift)

    def test_minimum_tree(self):
        T = nx.minimum_spanning_tree(self.G, algorithm=self.algo)
        actual = sorted(T.edges(data=True))
        assert_edges_equal(actual, self.minimum_spanning_edgelist)

    def test_maximum_tree(self):
        T = nx.maximum_spanning_tree(self.G, algorithm=self.algo)
        actual = sorted(T.edges(data=True))
        assert_edges_equal(actual, self.maximum_spanning_edgelist)

    def test_disconnected(self):
        G = nx.Graph([(0, 1, dict(weight=1)), (2, 3, dict(weight=2))])
        T = nx.minimum_spanning_tree(G, algorithm=self.algo)
        assert_nodes_equal(list(T), list(range(4)))
        assert_edges_equal(list(T.edges()), [(0, 1), (2, 3)])

    def test_empty_graph(self):
        G = nx.empty_graph(3)
        T = nx.minimum_spanning_tree(G, algorithm=self.algo)
        assert_nodes_equal(sorted(T), list(range(3)))
        assert T.number_of_edges() == 0

    def test_attributes(self):
        G = nx.Graph()
        G.add_edge(1, 2, weight=1, color='red', distance=7)
        G.add_edge(2, 3, weight=1, color='green', distance=2)
        G.add_edge(1, 3, weight=10, color='blue', distance=1)
        G.graph['foo'] = 'bar'
        T = nx.minimum_spanning_tree(G, algorithm=self.algo)
        assert T.graph == G.graph
        assert_nodes_equal(T, G)
        for u, v in T.edges():
            assert T.adj[u][v] == G.adj[u][v]

    def test_weight_attribute(self):
        G = nx.Graph()
        G.add_edge(0, 1, weight=1, distance=7)
        G.add_edge(0, 2, weight=30, distance=1)
        G.add_edge(1, 2, weight=1, distance=1)
        G.add_node(3)
        T = nx.minimum_spanning_tree(G, algorithm=self.algo, weight='distance')
        assert_nodes_equal(sorted(T), list(range(4)))
        assert_edges_equal(sorted(T.edges()), [(0, 2), (1, 2)])
        T = nx.maximum_spanning_tree(G, algorithm=self.algo, weight='distance')
        assert_nodes_equal(sorted(T), list(range(4)))
        assert_edges_equal(sorted(T.edges()), [(0, 1), (0, 2)])


class TestBoruvka(MinimumSpanningTreeTestBase, TestCase):
    """Unit tests for computing a minimum (or maximum) spanning tree
    using Borůvka's algorithm.

    """
    algorithm = 'boruvka'

    def test_unicode_name(self):
        """Tests that using a Unicode string can correctly indicate
        Borůvka's algorithm.

        """
        edges = nx.minimum_spanning_edges(self.G, algorithm=u'borůvka')
        # Edges from the spanning edges functions don't come in sorted
        # orientation, so we need to sort each edge individually.
        actual = sorted((min(u, v), max(u, v), d) for u, v, d in edges)
        assert_edges_equal(actual, self.minimum_spanning_edgelist)


class MultigraphMSTTestBase(MinimumSpanningTreeTestBase):
    # Abstract class

    def test_multigraph_keys_min(self):
        """Tests that the minimum spanning edges of a multigraph
        preserves edge keys.

        """
        G = nx.MultiGraph()
        G.add_edge(0, 1, key='a', weight=2)
        G.add_edge(0, 1, key='b', weight=1)
        min_edges = nx.minimum_spanning_edges
        mst_edges = min_edges(G, algorithm=self.algo, data=False)
        assert_edges_equal([(0, 1, 'b')], list(mst_edges))

    def test_multigraph_keys_max(self):
        """Tests that the maximum spanning edges of a multigraph
        preserves edge keys.

        """
        G = nx.MultiGraph()
        G.add_edge(0, 1, key='a', weight=2)
        G.add_edge(0, 1, key='b', weight=1)
        max_edges = nx.maximum_spanning_edges
        mst_edges = max_edges(G, algorithm=self.algo, data=False)
        assert_edges_equal([(0, 1, 'a')], list(mst_edges))


class TestKruskal(MultigraphMSTTestBase, TestCase):
    """Unit tests for computing a minimum (or maximum) spanning tree
    using Kruskal's algorithm.

    """
    algorithm = 'kruskal'


class TestPrim(MultigraphMSTTestBase, TestCase):
    """Unit tests for computing a minimum (or maximum) spanning tree
    using Prim's algorithm.

    """
    algorithm = 'prim'

    def test_multigraph_keys_tree(self):
        G = nx.MultiGraph()
        G.add_edge(0, 1, key='a', weight=2)
        G.add_edge(0, 1, key='b', weight=1)
        T = nx.minimum_spanning_tree(G)
        assert_edges_equal([(0, 1, 1)], list(T.edges(data='weight')))

    def test_multigraph_keys_tree_max(self):
        G = nx.MultiGraph()
        G.add_edge(0, 1, key='a', weight=2)
        G.add_edge(0, 1, key='b', weight=1)
        T = nx.maximum_spanning_tree(G)
        assert_edges_equal([(0, 1, 2)], list(T.edges(data='weight')))