HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/linalg/tests/test_laplacian.py
import pytest
numpy = pytest.importorskip('numpy')
npt = pytest.importorskip('numpy.testing')
scipy = pytest.importorskip('scipy')

import networkx as nx
from networkx.generators.degree_seq import havel_hakimi_graph


class TestLaplacian(object):

    @classmethod
    def setup_class(cls):
        deg = [3, 2, 2, 1, 0]
        cls.G = havel_hakimi_graph(deg)
        cls.WG = nx.Graph((u, v, {'weight': 0.5, 'other': 0.3})
                           for (u, v) in cls.G.edges())
        cls.WG.add_node(4)
        cls.MG = nx.MultiGraph(cls.G)

        # Graph with clsloops
        cls.Gsl = cls.G.copy()
        for node in cls.Gsl.nodes():
            cls.Gsl.add_edge(node, node)

    def test_laplacian(self):
        "Graph Laplacian"
        NL = numpy.array([[3, -1, -1, -1, 0],
                          [-1,  2, -1,  0, 0],
                          [-1, -1,  2,  0, 0],
                          [-1,  0,  0,  1, 0],
                          [0,  0,  0,  0, 0]])
        WL = 0.5 * NL
        OL = 0.3 * NL
        npt.assert_equal(nx.laplacian_matrix(self.G).todense(), NL)
        npt.assert_equal(nx.laplacian_matrix(self.MG).todense(), NL)
        npt.assert_equal(nx.laplacian_matrix(self.G, nodelist=[0, 1]).todense(),
                     numpy.array([[1, -1], [-1, 1]]))
        npt.assert_equal(nx.laplacian_matrix(self.WG).todense(), WL)
        npt.assert_equal(nx.laplacian_matrix(self.WG, weight=None).todense(), NL)
        npt.assert_equal(nx.laplacian_matrix(self.WG, weight='other').todense(), OL)

    def test_normalized_laplacian(self):
        "Generalized Graph Laplacian"
        GL = numpy.array([[1.00, -0.408, -0.408, -0.577,  0.00],
                          [-0.408,  1.00, -0.50,  0.00, 0.00],
                          [-0.408, -0.50,  1.00,  0.00,  0.00],
                          [-0.577,  0.00,  0.00,  1.00,  0.00],
                          [0.00,  0.00,  0.00,  0.00,  0.00]])
        Lsl = numpy.array([[0.75, -0.2887, -0.2887, -0.3536,  0.],
                           [-0.2887,  0.6667, -0.3333,  0.,  0.],
                           [-0.2887, -0.3333,  0.6667,  0.,  0.],
                           [-0.3536,  0.,  0.,  0.5,  0.],
                           [0.,  0.,  0.,  0.,  0.]])

        npt.assert_almost_equal(nx.normalized_laplacian_matrix(self.G).todense(),
                            GL, decimal=3)
        npt.assert_almost_equal(nx.normalized_laplacian_matrix(self.MG).todense(),
                            GL, decimal=3)
        npt.assert_almost_equal(nx.normalized_laplacian_matrix(self.WG).todense(),
                            GL, decimal=3)
        npt.assert_almost_equal(nx.normalized_laplacian_matrix(self.WG, weight='other').todense(),
                            GL, decimal=3)
        npt.assert_almost_equal(nx.normalized_laplacian_matrix(self.Gsl).todense(),
                            Lsl, decimal=3)

    def test_directed_laplacian(self):
        "Directed Laplacian"
        # Graph used as an example in Sec. 4.1 of Langville and Meyer,
        # "Google's PageRank and Beyond". The graph contains dangling nodes, so
        # the pagerank random walk is selected by directed_laplacian
        G = nx.DiGraph()
        G.add_edges_from(((1, 2), (1, 3), (3, 1), (3, 2), (3, 5), (4, 5), (4, 6),
                          (5, 4), (5, 6), (6, 4)))
        GL = numpy.array([[0.9833, -0.2941, -0.3882, -0.0291, -0.0231, -0.0261],
                          [-0.2941,  0.8333, -0.2339, -0.0536, -0.0589, -0.0554],
                          [-0.3882, -0.2339,  0.9833, -0.0278, -0.0896, -0.0251],
                          [-0.0291, -0.0536, -0.0278,  0.9833, -0.4878, -0.6675],
                          [-0.0231, -0.0589, -0.0896, -0.4878,  0.9833, -0.2078],
                          [-0.0261, -0.0554, -0.0251, -0.6675, -0.2078,  0.9833]])
        L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G))
        npt.assert_almost_equal(L, GL, decimal=3)

        # Make the graph strongly connected, so we can use a random and lazy walk
        G.add_edges_from((((2, 5), (6, 1))))
        GL = numpy.array([[1., -0.3062, -0.4714,  0.,  0., -0.3227],
                          [-0.3062,  1., -0.1443,  0., -0.3162,  0.],
                          [-0.4714, -0.1443,  1.,  0., -0.0913,  0.],
                          [0.,  0.,  0.,  1., -0.5, -0.5],
                          [0., -0.3162, -0.0913, -0.5,  1., -0.25],
                          [-0.3227,  0.,  0., -0.5, -0.25,  1.]])
        L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G), walk_type='random')
        npt.assert_almost_equal(L, GL, decimal=3)

        GL = numpy.array([[0.5, -0.1531, -0.2357,  0.,  0., -0.1614],
                          [-0.1531,  0.5, -0.0722,  0., -0.1581,  0.],
                          [-0.2357, -0.0722,  0.5,  0., -0.0456,  0.],
                          [0.,  0.,  0.,  0.5, -0.25, -0.25],
                          [0., -0.1581, -0.0456, -0.25,  0.5, -0.125],
                          [-0.1614,  0.,  0., -0.25, -0.125,  0.5]])
        L = nx.directed_laplacian_matrix(G, alpha=0.9, nodelist=sorted(G), walk_type='lazy')
        npt.assert_almost_equal(L, GL, decimal=3)

    def test_directed_combinatorial_laplacian(self):
        "Directed combinatorial Laplacian"
        # Graph used as an example in Sec. 4.1 of Langville and Meyer,
        # "Google's PageRank and Beyond". The graph contains dangling nodes, so
        # the pagerank random walk is selected by directed_laplacian
        G = nx.DiGraph()
        G.add_edges_from(((1, 2), (1, 3), (3, 1), (3, 2), (3, 5), (4, 5), (4, 6),
                          (5, 4), (5, 6), (6, 4)))

        GL = numpy.array([[0.0366, -0.0132, -0.0153, -0.0034, -0.0020, -0.0027],
                          [-0.0132, 0.0450, -0.0111, -0.0076, -0.0062, -0.0069],
                          [-0.0153, -0.0111, 0.0408, -0.0035, -0.0083, -0.0027],
                          [-0.0034, -0.0076, -0.0035, 0.3688, -0.1356, -0.2187],
                          [-0.0020, -0.0062, -0.0083, -0.1356, 0.2026, -0.0505],
                          [-0.0027, -0.0069, -0.0027, -0.2187, -0.0505, 0.2815]])

        L = nx.directed_combinatorial_laplacian_matrix(G, alpha=0.9,
                                                       nodelist=sorted(G))
        npt.assert_almost_equal(L, GL, decimal=3)

        # Make the graph strongly connected, so we can use a random and lazy walk
        G.add_edges_from((((2, 5), (6, 1))))

        GL = numpy.array([[0.1395, -0.0349, -0.0465, 0, 0, -0.0581],
                          [-0.0349, 0.0930, -0.0116, 0, -0.0465, 0],
                          [-0.0465, -0.0116, 0.0698, 0, -0.0116, 0],
                          [0, 0, 0, 0.2326, -0.1163, -0.1163],
                          [0, -0.0465, -0.0116, -0.1163, 0.2326, -0.0581],
                          [-0.0581, 0, 0, -0.1163, -0.0581, 0.2326]])

        L = nx.directed_combinatorial_laplacian_matrix(G, alpha=0.9,
                                                       nodelist=sorted(G),
                                                       walk_type='random')
        npt.assert_almost_equal(L, GL, decimal=3)

        GL = numpy.array([[0.0698, -0.0174, -0.0233, 0, 0, -0.0291],
                          [-0.0174, 0.0465, -0.0058, 0, -0.0233, 0],
                          [-0.0233, -0.0058, 0.0349, 0, -0.0058, 0],
                          [0, 0, 0, 0.1163, -0.0581, -0.0581],
                          [0, -0.0233, -0.0058, -0.0581, 0.1163, -0.0291],
                          [-0.0291, 0, 0, -0.0581, -0.0291, 0.1163]])

        L = nx.directed_combinatorial_laplacian_matrix(G, alpha=0.9,
                                                       nodelist=sorted(G),
                                                       walk_type='lazy')
        npt.assert_almost_equal(L, GL, decimal=3)