HEX
Server: Apache
System: Linux vps-cdc32557.vps.ovh.ca 5.15.0-156-generic #166-Ubuntu SMP Sat Aug 9 00:02:46 UTC 2025 x86_64
User: hanode (1017)
PHP: 7.4.33
Disabled: pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wifcontinued,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_get_handler,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,pcntl_async_signals,pcntl_unshare,
Upload Files
File: //lib/python3/dist-packages/networkx/classes/tests/test_graph.py
import pickle
import gc

import networkx as nx
from networkx.testing.utils import *

import pytest


class BaseGraphTester(object):
    """ Tests for data-structure independent graph class features."""

    def test_contains(self):
        G = self.K3
        assert(1 in G)
        assert(4 not in G)
        assert('b' not in G)
        assert([] not in G)   # no exception for nonhashable
        assert({1: 1} not in G)  # no exception for nonhashable

    def test_order(self):
        G = self.K3
        assert len(G) == 3
        assert G.order() == 3
        assert G.number_of_nodes() == 3

    def test_nodes(self):
        G = self.K3
        assert sorted(G.nodes()) == self.k3nodes
        assert sorted(G.nodes(data=True)) == [(0, {}), (1, {}), (2, {})]

    def test_has_node(self):
        G = self.K3
        assert(G.has_node(1))
        assert(not G.has_node(4))
        assert(not G.has_node([]))   # no exception for nonhashable
        assert(not G.has_node({1: 1}))  # no exception for nonhashable

    def test_has_edge(self):
        G = self.K3
        assert G.has_edge(0, 1) == True
        assert G.has_edge(0, -1) == False

    def test_neighbors(self):
        G = self.K3
        assert sorted(G.neighbors(0)) == [1, 2]
        with pytest.raises(nx.NetworkXError):
            G.neighbors(-1)

    def test_memory_leak(self):
        G = self.Graph()

        def count_objects_of_type(_type):
            return sum(1 for obj in gc.get_objects() if isinstance(obj, _type))

        gc.collect()
        before = count_objects_of_type(self.Graph)
        G.copy()
        after = count_objects_of_type(self.Graph)
        assert before == after

        # test a subgraph of the base class
        class MyGraph(self.Graph):
            pass

        gc.collect()
        G = MyGraph()
        before = count_objects_of_type(MyGraph)
        G.copy()
        after = count_objects_of_type(MyGraph)
        assert before == after

    def test_edges(self):
        G = self.K3
        assert_edges_equal(G.edges(), [(0, 1), (0, 2), (1, 2)])
        assert_edges_equal(G.edges(0), [(0, 1), (0, 2)])
        assert_edges_equal(G.edges([0, 1]), [(0, 1), (0, 2), (1, 2)])
        with pytest.raises(nx.NetworkXError):
            G.edges(-1)

    def test_weighted_degree(self):
        G = self.Graph()
        G.add_edge(1, 2, weight=2)
        G.add_edge(2, 3, weight=3)
        assert (sorted(d for n, d in G.degree(weight='weight')) ==
                     [2, 3, 5])
        assert dict(G.degree(weight='weight')) == {1: 2, 2: 5, 3: 3}
        assert G.degree(1, weight='weight') == 2
        assert G.degree([1], weight='weight') == [(1, 2)]

    def test_degree(self):
        G = self.K3
        assert sorted(G.degree()) == [(0, 2), (1, 2), (2, 2)]
        assert dict(G.degree()) == {0: 2, 1: 2, 2: 2}
        assert G.degree(0) == 2
        with pytest.raises(nx.NetworkXError):
            G.degree(-1)  # node not in graph

    def test_size(self):
        G = self.K3
        assert G.size() == 3
        assert G.number_of_edges() == 3

    def test_nbunch_iter(self):
        G = self.K3
        assert_nodes_equal(G.nbunch_iter(), self.k3nodes)  # all nodes
        assert_nodes_equal(G.nbunch_iter(0), [0])  # single node
        assert_nodes_equal(G.nbunch_iter([0, 1]), [0, 1])  # sequence
        # sequence with none in graph
        assert_nodes_equal(G.nbunch_iter([-1]), [])
        # string sequence with none in graph
        assert_nodes_equal(G.nbunch_iter("foo"), [])
        # node not in graph doesn't get caught upon creation of iterator
        bunch = G.nbunch_iter(-1)
        # but gets caught when iterator used
        with pytest.raises(nx.NetworkXError):
            list(bunch)
        # unhashable doesn't get caught upon creation of iterator
        bunch = G.nbunch_iter([0, 1, 2, {}])
        # but gets caught when iterator hits the unhashable
        with pytest.raises(nx.NetworkXError):
            list(bunch)

    def test_nbunch_iter_node_format_raise(self):
        # Tests that a node that would have failed string formatting
        # doesn't cause an error when attempting to raise a
        # :exc:`nx.NetworkXError`.

        # For more information, see pull request #1813.
        G = self.Graph()
        nbunch = [('x', set())]
        with pytest.raises(nx.NetworkXError):
            list(G.nbunch_iter(nbunch))

    def test_selfloop_degree(self):
        G = self.Graph()
        G.add_edge(1, 1)
        assert sorted(G.degree()) == [(1, 2)]
        assert dict(G.degree()) == {1: 2}
        assert G.degree(1) == 2
        assert sorted(G.degree([1])) == [(1, 2)]
        assert G.degree(1, weight='weight') == 2

    def test_selfloops(self):
        G = self.K3.copy()
        G.add_edge(0, 0)
        assert_nodes_equal(nx.nodes_with_selfloops(G), [0])
        assert_edges_equal(nx.selfloop_edges(G), [(0, 0)])
        assert nx.number_of_selfloops(G) == 1
        G.remove_edge(0, 0)
        G.add_edge(0, 0)
        G.remove_edges_from([(0, 0)])
        G.add_edge(1, 1)
        G.remove_node(1)
        G.add_edge(0, 0)
        G.add_edge(1, 1)
        G.remove_nodes_from([0, 1])


class BaseAttrGraphTester(BaseGraphTester):
    """ Tests of graph class attribute features."""

    def test_weighted_degree(self):
        G = self.Graph()
        G.add_edge(1, 2, weight=2, other=3)
        G.add_edge(2, 3, weight=3, other=4)
        assert (sorted(d for n, d in G.degree(weight='weight')) ==
                     [2, 3, 5])
        assert dict(G.degree(weight='weight')) == {1: 2, 2: 5, 3: 3}
        assert G.degree(1, weight='weight') == 2
        assert_nodes_equal((G.degree([1], weight='weight')), [(1, 2)])

        assert_nodes_equal((d for n, d in G.degree(weight='other')), [3, 7, 4])
        assert dict(G.degree(weight='other')) == {1: 3, 2: 7, 3: 4}
        assert G.degree(1, weight='other') == 3
        assert_edges_equal((G.degree([1], weight='other')), [(1, 3)])

    def add_attributes(self, G):
        G.graph['foo'] = []
        G.nodes[0]['foo'] = []
        G.remove_edge(1, 2)
        ll = []
        G.add_edge(1, 2, foo=ll)
        G.add_edge(2, 1, foo=ll)

    def test_name(self):
        G = self.Graph(name='')
        assert G.name == ""
        G = self.Graph(name='test')
        assert G.__str__() == "test"
        assert G.name == "test"

    def test_graph_chain(self):
        G = self.Graph([(0, 1), (1, 2)])
        DG = G.to_directed(as_view=True)
        SDG = DG.subgraph([0, 1])
        RSDG = SDG.reverse(copy=False)
        assert G is DG._graph
        assert DG is SDG._graph
        assert SDG is RSDG._graph

    def test_copy(self):
        G = self.Graph()
        G.add_node(0)
        G.add_edge(1, 2)
        self.add_attributes(G)
        # copy edge datadict but any container attr are same
        H = G.copy()
        self.graphs_equal(H, G)
        self.different_attrdict(H, G)
        self.shallow_copy_attrdict(H, G)

    def test_class_copy(self):
        G = self.Graph()
        G.add_node(0)
        G.add_edge(1, 2)
        self.add_attributes(G)
        # copy edge datadict but any container attr are same
        H = G.__class__(G)
        self.graphs_equal(H, G)
        self.different_attrdict(H, G)
        self.shallow_copy_attrdict(H, G)

    def test_fresh_copy(self):
        G = self.Graph()
        G.add_node(0)
        G.add_edge(1, 2)
        self.add_attributes(G)
        # copy graph structure but use fresh datadict
        H = G.__class__()
        H.add_nodes_from(G)
        H.add_edges_from(G.edges())
        assert len(G.nodes[0]) == 1
        ddict = G.adj[1][2][0] if G.is_multigraph() else G.adj[1][2]
        assert len(ddict) == 1
        assert len(H.nodes[0]) == 0
        ddict = H.adj[1][2][0] if H.is_multigraph() else H.adj[1][2]
        assert len(ddict) == 0

    def is_deepcopy(self, H, G):
        self.graphs_equal(H, G)
        self.different_attrdict(H, G)
        self.deep_copy_attrdict(H, G)

    def deep_copy_attrdict(self, H, G):
        self.deepcopy_graph_attr(H, G)
        self.deepcopy_node_attr(H, G)
        self.deepcopy_edge_attr(H, G)

    def deepcopy_graph_attr(self, H, G):
        assert G.graph['foo'] == H.graph['foo']
        G.graph['foo'].append(1)
        assert G.graph['foo'] != H.graph['foo']

    def deepcopy_node_attr(self, H, G):
        assert G.nodes[0]['foo'] == H.nodes[0]['foo']
        G.nodes[0]['foo'].append(1)
        assert G.nodes[0]['foo'] != H.nodes[0]['foo']

    def deepcopy_edge_attr(self, H, G):
        assert G[1][2]['foo'] == H[1][2]['foo']
        G[1][2]['foo'].append(1)
        assert G[1][2]['foo'] != H[1][2]['foo']

    def is_shallow_copy(self, H, G):
        self.graphs_equal(H, G)
        self.shallow_copy_attrdict(H, G)

    def shallow_copy_attrdict(self, H, G):
        self.shallow_copy_graph_attr(H, G)
        self.shallow_copy_node_attr(H, G)
        self.shallow_copy_edge_attr(H, G)

    def shallow_copy_graph_attr(self, H, G):
        assert G.graph['foo'] == H.graph['foo']
        G.graph['foo'].append(1)
        assert G.graph['foo'] == H.graph['foo']

    def shallow_copy_node_attr(self, H, G):
        assert G.nodes[0]['foo'] == H.nodes[0]['foo']
        G.nodes[0]['foo'].append(1)
        assert G.nodes[0]['foo'] == H.nodes[0]['foo']

    def shallow_copy_edge_attr(self, H, G):
        assert G[1][2]['foo'] == H[1][2]['foo']
        G[1][2]['foo'].append(1)
        assert G[1][2]['foo'] == H[1][2]['foo']

    def same_attrdict(self, H, G):
        old_foo = H[1][2]['foo']
        H.adj[1][2]['foo'] = 'baz'
        assert G.edges == H.edges
        H.adj[1][2]['foo'] = old_foo
        assert G.edges == H.edges

        old_foo = H.nodes[0]['foo']
        H.nodes[0]['foo'] = 'baz'
        assert G.nodes == H.nodes
        H.nodes[0]['foo'] = old_foo
        assert G.nodes == H.nodes

    def different_attrdict(self, H, G):
        old_foo = H[1][2]['foo']
        H.adj[1][2]['foo'] = 'baz'
        assert G._adj != H._adj
        H.adj[1][2]['foo'] = old_foo
        assert G._adj == H._adj

        old_foo = H.nodes[0]['foo']
        H.nodes[0]['foo'] = 'baz'
        assert G._node != H._node
        H.nodes[0]['foo'] = old_foo
        assert G._node == H._node

    def graphs_equal(self, H, G):
        assert G._adj == H._adj
        assert G._node == H._node
        assert G.graph == H.graph
        assert G.name == H.name
        if not G.is_directed() and not H.is_directed():
            assert H._adj[1][2] is H._adj[2][1]
            assert G._adj[1][2] is G._adj[2][1]
        else:  # at least one is directed
            if not G.is_directed():
                G._pred = G._adj
                G._succ = G._adj
            if not H.is_directed():
                H._pred = H._adj
                H._succ = H._adj
            assert G._pred == H._pred
            assert G._succ == H._succ
            assert H._succ[1][2] is H._pred[2][1]
            assert G._succ[1][2] is G._pred[2][1]

    def test_graph_attr(self):
        G = self.K3
        G.graph['foo'] = 'bar'
        assert G.graph['foo'] == 'bar'
        del G.graph['foo']
        assert G.graph == {}
        H = self.Graph(foo='bar')
        assert H.graph['foo'] == 'bar'

    def test_node_attr(self):
        G = self.K3
        G.add_node(1, foo='bar')
        assert_nodes_equal(G.nodes(), [0, 1, 2])
        assert_nodes_equal(G.nodes(data=True),
                           [(0, {}), (1, {'foo': 'bar'}), (2, {})])
        G.nodes[1]['foo'] = 'baz'
        assert_nodes_equal(G.nodes(data=True),
                           [(0, {}), (1, {'foo': 'baz'}), (2, {})])
        assert_nodes_equal(G.nodes(data='foo'),
                           [(0, None), (1, 'baz'), (2, None)])
        assert_nodes_equal(G.nodes(data='foo', default='bar'),
                           [(0, 'bar'), (1, 'baz'), (2, 'bar')])

    def test_node_attr2(self):
        G = self.K3
        a = {'foo': 'bar'}
        G.add_node(3, **a)
        assert_nodes_equal(G.nodes(), [0, 1, 2, 3])
        assert_nodes_equal(G.nodes(data=True),
                           [(0, {}), (1, {}), (2, {}), (3, {'foo': 'bar'})])

    def test_edge_lookup(self):
        G = self.Graph()
        G.add_edge(1, 2, foo='bar')
        assert_edges_equal(G.edges[1, 2], {'foo': 'bar'})

    def test_edge_attr(self):
        G = self.Graph()
        G.add_edge(1, 2, foo='bar')
        assert_edges_equal(G.edges(data=True), [(1, 2, {'foo': 'bar'})])
        assert_edges_equal(G.edges(data='foo'), [(1, 2, 'bar')])

    def test_edge_attr2(self):
        G = self.Graph()
        G.add_edges_from([(1, 2), (3, 4)], foo='foo')
        assert_edges_equal(G.edges(data=True),
                           [(1, 2, {'foo': 'foo'}), (3, 4, {'foo': 'foo'})])
        assert_edges_equal(G.edges(data='foo'),
                           [(1, 2, 'foo'), (3, 4, 'foo')])

    def test_edge_attr3(self):
        G = self.Graph()
        G.add_edges_from([(1, 2, {'weight': 32}),
                          (3, 4, {'weight': 64})], foo='foo')
        assert_edges_equal(G.edges(data=True),
                           [(1, 2, {'foo': 'foo', 'weight': 32}),
                            (3, 4, {'foo': 'foo', 'weight': 64})])

        G.remove_edges_from([(1, 2), (3, 4)])
        G.add_edge(1, 2, data=7, spam='bar', bar='foo')
        assert_edges_equal(G.edges(data=True),
                           [(1, 2, {'data': 7, 'spam': 'bar', 'bar': 'foo'})])

    def test_edge_attr4(self):
        G = self.Graph()
        G.add_edge(1, 2, data=7, spam='bar', bar='foo')
        assert_edges_equal(G.edges(data=True),
                           [(1, 2, {'data': 7, 'spam': 'bar', 'bar': 'foo'})])
        G[1][2]['data'] = 10  # OK to set data like this
        assert_edges_equal(G.edges(data=True),
                           [(1, 2, {'data': 10, 'spam': 'bar', 'bar': 'foo'})])

        G.adj[1][2]['data'] = 20
        assert_edges_equal(G.edges(data=True),
                           [(1, 2, {'data': 20, 'spam': 'bar', 'bar': 'foo'})])
        G.edges[1, 2]['data'] = 21  # another spelling, "edge"
        assert_edges_equal(G.edges(data=True),
                           [(1, 2, {'data': 21, 'spam': 'bar', 'bar': 'foo'})])
        G.adj[1][2]['listdata'] = [20, 200]
        G.adj[1][2]['weight'] = 20
        dd = {'data': 21, 'spam': 'bar', 'bar': 'foo',
              'listdata': [20, 200], 'weight': 20}
        assert_edges_equal(G.edges(data=True), [(1, 2, dd)])

    def test_to_undirected(self):
        G = self.K3
        self.add_attributes(G)
        H = nx.Graph(G)
        self.is_shallow_copy(H, G)
        self.different_attrdict(H, G)
        H = G.to_undirected()
        self.is_deepcopy(H, G)

    def test_to_directed(self):
        G = self.K3
        self.add_attributes(G)
        H = nx.DiGraph(G)
        self.is_shallow_copy(H, G)
        self.different_attrdict(H, G)
        H = G.to_directed()
        self.is_deepcopy(H, G)

    def test_subgraph(self):
        G = self.K3
        self.add_attributes(G)
        H = G.subgraph([0, 1, 2, 5])
        self.graphs_equal(H, G)
        self.same_attrdict(H, G)
        self.shallow_copy_attrdict(H, G)

        H = G.subgraph(0)
        assert H.adj == {0: {}}
        H = G.subgraph([])
        assert H.adj == {}
        assert G.adj != {}

    def test_selfloops_attr(self):
        G = self.K3.copy()
        G.add_edge(0, 0)
        G.add_edge(1, 1, weight=2)
        assert_edges_equal(nx.selfloop_edges(G, data=True),
                           [(0, 0, {}), (1, 1, {'weight': 2})])
        assert_edges_equal(nx.selfloop_edges(G, data='weight'),
                           [(0, 0, None), (1, 1, 2)])


class TestGraph(BaseAttrGraphTester):
    """Tests specific to dict-of-dict-of-dict graph data structure"""

    def setup_method(self):
        self.Graph = nx.Graph
        # build dict-of-dict-of-dict K3
        ed1, ed2, ed3 = ({}, {}, {})
        self.k3adj = {0: {1: ed1, 2: ed2},
                      1: {0: ed1, 2: ed3},
                      2: {0: ed2, 1: ed3}}
        self.k3edges = [(0, 1), (0, 2), (1, 2)]
        self.k3nodes = [0, 1, 2]
        self.K3 = self.Graph()
        self.K3._adj = self.k3adj
        self.K3._node = {}
        self.K3._node[0] = {}
        self.K3._node[1] = {}
        self.K3._node[2] = {}

    def test_pickle(self):
        G = self.K3
        pg = pickle.loads(pickle.dumps(G, -1))
        self.graphs_equal(pg, G)
        pg = pickle.loads(pickle.dumps(G))
        self.graphs_equal(pg, G)

    def test_data_input(self):
        G = self.Graph({1: [2], 2: [1]}, name="test")
        assert G.name == "test"
        assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]
        G = self.Graph({1: [2], 2: [1]}, name="test")
        assert G.name == "test"
        assert sorted(G.adj.items()) == [(1, {2: {}}), (2, {1: {}})]

    def test_adjacency(self):
        G = self.K3
        assert (dict(G.adjacency()) ==
                     {0: {1: {}, 2: {}}, 1: {0: {}, 2: {}}, 2: {0: {}, 1: {}}})

    def test_getitem(self):
        G = self.K3
        assert G[0] == {1: {}, 2: {}}
        with pytest.raises(KeyError):
            G.__getitem__('j')
        with pytest.raises(TypeError):
            G.__getitem__(['A'])

    def test_add_node(self):
        G = self.Graph()
        G.add_node(0)
        assert G.adj == {0: {}}
        # test add attributes
        G.add_node(1, c='red')
        G.add_node(2, c='blue')
        G.add_node(3, c='red')
        assert G.nodes[1]['c'] == 'red'
        assert G.nodes[2]['c'] == 'blue'
        assert G.nodes[3]['c'] == 'red'
        # test updating attributes
        G.add_node(1, c='blue')
        G.add_node(2, c='red')
        G.add_node(3, c='blue')
        assert G.nodes[1]['c'] == 'blue'
        assert G.nodes[2]['c'] == 'red'
        assert G.nodes[3]['c'] == 'blue'

    def test_add_nodes_from(self):
        G = self.Graph()
        G.add_nodes_from([0, 1, 2])
        assert G.adj == {0: {}, 1: {}, 2: {}}
        # test add attributes
        G.add_nodes_from([0, 1, 2], c='red')
        assert G.nodes[0]['c'] == 'red'
        assert G.nodes[2]['c'] == 'red'
        # test that attribute dicts are not the same
        assert(G.nodes[0] is not G.nodes[1])
        # test updating attributes
        G.add_nodes_from([0, 1, 2], c='blue')
        assert G.nodes[0]['c'] == 'blue'
        assert G.nodes[2]['c'] == 'blue'
        assert(G.nodes[0] is not G.nodes[1])
        # test tuple input
        H = self.Graph()
        H.add_nodes_from(G.nodes(data=True))
        assert H.nodes[0]['c'] == 'blue'
        assert H.nodes[2]['c'] == 'blue'
        assert(H.nodes[0] is not H.nodes[1])
        # specific overrides general
        H.add_nodes_from([0, (1, {'c': 'green'}), (3, {'c': 'cyan'})], c='red')
        assert H.nodes[0]['c'] == 'red'
        assert H.nodes[1]['c'] == 'green'
        assert H.nodes[2]['c'] == 'blue'
        assert H.nodes[3]['c'] == 'cyan'

    def test_remove_node(self):
        G = self.K3
        G.remove_node(0)
        assert G.adj == {1: {2: {}}, 2: {1: {}}}
        with pytest.raises(nx.NetworkXError):
            G.remove_node(-1)

        # generator here to implement list,set,string...
    def test_remove_nodes_from(self):
        G = self.K3
        G.remove_nodes_from([0, 1])
        assert G.adj == {2: {}}
        G.remove_nodes_from([-1])  # silent fail

    def test_add_edge(self):
        G = self.Graph()
        G.add_edge(0, 1)
        assert G.adj == {0: {1: {}}, 1: {0: {}}}
        G = self.Graph()
        G.add_edge(*(0, 1))
        assert G.adj == {0: {1: {}}, 1: {0: {}}}

    def test_add_edges_from(self):
        G = self.Graph()
        G.add_edges_from([(0, 1), (0, 2, {'weight': 3})])
        assert G.adj == {0: {1: {}, 2: {'weight': 3}}, 1: {0: {}},
                             2: {0: {'weight': 3}}}
        G = self.Graph()
        G.add_edges_from([(0, 1), (0, 2, {'weight': 3}),
                          (1, 2, {'data': 4})], data=2)
        assert G.adj == {
            0: {1: {'data': 2}, 2: {'weight': 3, 'data': 2}},
            1: {0: {'data': 2}, 2: {'data': 4}},
            2: {0: {'weight': 3, 'data': 2}, 1: {'data': 4}}
        }

        with pytest.raises(nx.NetworkXError):
            G.add_edges_from([(0,)])  # too few in tuple
        with pytest.raises(nx.NetworkXError):
            G.add_edges_from([(0, 1, 2, 3)])  # too many in tuple
        with pytest.raises(TypeError):
            G.add_edges_from([0])  # not a tuple

    def test_remove_edge(self):
        G = self.K3
        G.remove_edge(0, 1)
        assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
        with pytest.raises(nx.NetworkXError):
            G.remove_edge(-1, 0)

    def test_remove_edges_from(self):
        G = self.K3
        G.remove_edges_from([(0, 1)])
        assert G.adj == {0: {2: {}}, 1: {2: {}}, 2: {0: {}, 1: {}}}
        G.remove_edges_from([(0, 0)])  # silent fail

    def test_clear(self):
        G = self.K3
        G.clear()
        assert G.adj == {}

    def test_edges_data(self):
        G = self.K3
        all_edges = [(0, 1, {}), (0, 2, {}), (1, 2, {})]
        assert_edges_equal(G.edges(data=True), all_edges)
        assert_edges_equal(G.edges(0, data=True), [(0, 1, {}), (0, 2, {})])
        assert_edges_equal(G.edges([0, 1], data=True), all_edges)
        with pytest.raises(nx.NetworkXError):
            G.edges(-1, True)

    def test_get_edge_data(self):
        G = self.K3
        assert G.get_edge_data(0, 1) == {}
        assert G[0][1] == {}
        assert G.get_edge_data(10, 20) == None
        assert G.get_edge_data(-1, 0) == None
        assert G.get_edge_data(-1, 0, default=1) == 1

    def test_update(self):
        # specify both edgees and nodes
        G = self.K3.copy()
        G.update(nodes=[3, (4, {'size': 2})],
                 edges=[(4, 5), (6, 7, {'weight': 2})])
        nlist = [(0, {}), (1, {}), (2, {}), (3, {}),
                 (4, {'size': 2}), (5, {}), (6, {}), (7, {})]
        assert sorted(G.nodes.data()) == nlist
        if G.is_directed():
            elist = [(0, 1, {}), (0, 2, {}), (1, 0, {}), (1, 2, {}),
                     (2, 0, {}), (2, 1, {}),
                     (4, 5, {}), (6, 7, {'weight': 2})]
        else:
            elist = [(0, 1, {}), (0, 2, {}), (1, 2, {}),
                     (4, 5, {}), (6, 7, {'weight': 2})]
        assert sorted(G.edges.data()) == elist
        assert G.graph == {}

        # no keywords -- order is edges, nodes
        G = self.K3.copy()
        G.update([(4, 5), (6, 7, {'weight': 2})], [3, (4, {'size': 2})])
        assert sorted(G.nodes.data()) == nlist
        assert sorted(G.edges.data()) == elist
        assert G.graph == {}

        # update using only a graph
        G = self.Graph()
        G.graph['foo'] = 'bar'
        G.add_node(2, data=4)
        G.add_edge(0, 1, weight=0.5)
        GG = G.copy()
        H = self.Graph()
        GG.update(H)
        assert_graphs_equal(G, GG)
        H.update(G)
        assert_graphs_equal(H, G)

        # update nodes only
        H = self.Graph()
        H.update(nodes=[3, 4])
        assert H.nodes ^ {3, 4} == set([])
        assert H.size() == 0

        # update edges only
        H = self.Graph()
        H.update(edges=[(3, 4)])
        assert sorted(H.edges.data()) == [(3, 4, {})]
        assert H.size() == 1

        # No inputs -> exception
        with pytest.raises(nx.NetworkXError):
            nx.Graph().update()


class TestEdgeSubgraph(object):
    """Unit tests for the :meth:`Graph.edge_subgraph` method."""

    def setup_method(self):
        # Create a path graph on five nodes.
        G = nx.path_graph(5)
        # Add some node, edge, and graph attributes.
        for i in range(5):
            G.nodes[i]['name'] = 'node{}'.format(i)
        G.edges[0, 1]['name'] = 'edge01'
        G.edges[3, 4]['name'] = 'edge34'
        G.graph['name'] = 'graph'
        # Get the subgraph induced by the first and last edges.
        self.G = G
        self.H = G.edge_subgraph([(0, 1), (3, 4)])

    def test_correct_nodes(self):
        """Tests that the subgraph has the correct nodes."""
        assert [0, 1, 3, 4] == sorted(self.H.nodes())

    def test_correct_edges(self):
        """Tests that the subgraph has the correct edges."""
        assert ([(0, 1, 'edge01'), (3, 4, 'edge34')] ==
                     sorted(self.H.edges(data='name')))

    def test_add_node(self):
        """Tests that adding a node to the original graph does not
        affect the nodes of the subgraph.

        """
        self.G.add_node(5)
        assert [0, 1, 3, 4] == sorted(self.H.nodes())

    def test_remove_node(self):
        """Tests that removing a node in the original graph does
        affect the nodes of the subgraph.

        """
        self.G.remove_node(0)
        assert [1, 3, 4] == sorted(self.H.nodes())

    def test_node_attr_dict(self):
        """Tests that the node attribute dictionary of the two graphs is
        the same object.

        """
        for v in self.H:
            assert self.G.nodes[v] == self.H.nodes[v]
        # Making a change to G should make a change in H and vice versa.
        self.G.nodes[0]['name'] = 'foo'
        assert self.G.nodes[0] == self.H.nodes[0]
        self.H.nodes[1]['name'] = 'bar'
        assert self.G.nodes[1] == self.H.nodes[1]

    def test_edge_attr_dict(self):
        """Tests that the edge attribute dictionary of the two graphs is
        the same object.

        """
        for u, v in self.H.edges():
            assert self.G.edges[u, v] == self.H.edges[u, v]
        # Making a change to G should make a change in H and vice versa.
        self.G.edges[0, 1]['name'] = 'foo'
        assert (self.G.edges[0, 1]['name'] ==
                     self.H.edges[0, 1]['name'])
        self.H.edges[3, 4]['name'] = 'bar'
        assert (self.G.edges[3, 4]['name'] ==
                     self.H.edges[3, 4]['name'])

    def test_graph_attr_dict(self):
        """Tests that the graph attribute dictionary of the two graphs
        is the same object.

        """
        assert self.G.graph is self.H.graph