File: //usr/share/ri/3.0.0/system/Matrix/EigenvalueDecomposition/cdesc-EigenvalueDecomposition.ri
U:RDoc::NormalClass[iI"EigenvalueDecomposition:ETI"$Matrix::EigenvalueDecomposition;TI"Object;To:RDoc::Markup::Document:@parts[o;;[o:RDoc::Markup::Paragraph;[I"3Eigenvalues and eigenvectors of a real matrix.;To:RDoc::Markup::BlankLine o; ;[I"=Computes the eigenvalues and eigenvectors of a matrix A.;T@o; ;[I"<If A is diagonalizable, this provides matrices V and D ;TI"Jsuch that A = V*D*V.inv, where D is the diagonal matrix with entries ;TI"Bequal to the eigenvalues and V is formed by the eigenvectors.;T@o; ;[I"AIf A is symmetric, then V is orthogonal and thus A = V*D*V.t;T:
@fileI"+lib/matrix/eigenvalue_decomposition.rb;T:0@omit_headings_from_table_of_contents_below0;0;0[ [ [ [[I"
class;T[[:public[[I"new;TI"+lib/matrix/eigenvalue_decomposition.rb;T[:protected[ [:private[ [I"
instance;T[[;
[[I"d;T@)[I"eigenvalue_matrix;T@)[I"eigenvalues;T@)[I"eigenvector_matrix;T@)[I"eigenvector_matrix_inv;T@)[I"eigenvectors;T@)[I" to_a;T@)[I"to_ary;T@)[I"v;T@)[I"
v_inv;T@)[;[ [;[[I"build_eigenvectors;T@)[I" cdiv;T@)[I"diagonalize;T@)[I"hessenberg_to_real_schur;T@)[I"reduce_to_hessenberg;T@)[I"tridiagonalize;T@)[ [U:RDoc::Context::Section[i 0o;;[ ;0;0[@I"Matrix;TcRDoc::NormalClass